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Abstract 16 

Belowground autotrophic respiration (RA) is one of the largest, but highly uncertain carbon flux 17 

components in terrestrial ecosystems. It has not been explored globally before and still acted as a “black 18 

box” in global carbon cycling. Such progress and uncertainty motivate a development of global RA 19 

dataset and understand its spatial and temporal pattern, causes and responses to future climate change. 20 

This study used Random Forest to study RA’s spatial and temporal pattern at the global scale by linking 21 

the updated field observations from Global Soil Respiration Database (v4) with global grid temperature, 22 

precipitation and other environmental variables. Globally, mean RA was 43.8±0.4 Pg C a-1 with a 23 

temporally increasing trend of 0.025±0.006 Pg C a-1 over 1980-2012. Such increment trend was widely 24 

spread with 58% global land areas. For each 1 oC increase in annual mean temperature, global RA 25 

increased by 0.85±0.13 Pg C a-1, and it was 0.17±0.03 Pg C a-1 for 10 mm increase in annual mean 26 

precipitation, indicating a positive feedback of RA to future climate change. At a global scale, 27 

precipitation was the main dominant climatic drivers of the spatial pattern of RA, accounting for 56% of 28 

global land areas with widely spread globally, particularly in dry or semi-arid areas, followed by 29 

shortwave radiation (25%) and temperature (19%). Different temporal patterns for varying climate zones 30 

and biomes indicated uneven response of RA to future climate change, challenging the perspective that 31 

the parameters of global carbon stimulation independent on climate zones and biomes. The developed 32 

RA database, the missing carbon flux component that is not constrained and validated in terrestrial 33 

ecosystem models and earth system models, will provide insights into understanding mechanisms 34 

underlying the spatial and temporal variability of belowground carbon dynamics. RA database also has 35 

great potentials to serve as a benchmark for future data-model comparisons. The RA product is freely 36 

available at https://doi.org/10.6084/m9.figshare.7636193.  37 

 38 
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1 Introduction 

Belowground autotrophic respiration (RA) mainly originated from plant roots, mycorrhizae, and 

other micro-organisms in the rhizosphere directly relying on labile carbon component leaked from roots 

(Hanson et al., 2000; Tang et al., 2016; Wang and Yang, 2007). Thus, RA reflects the photosynthesis 45 

derived carbon respired back to atmosphere by roots and regulates the net photosynthetic production 

allocation to belowground tissues (Högberg et al., 2002). RA is also one main component of soil 

respiration (Hanson et al., 2000), which represents the second largest source of carbon fluxes from soil 

to the atmosphere (after gross primary production, GPP) in the global carbon cycle (Raich and 

Schlesinger, 1992). Globally, RA contributed about 50% of total soil respiration on average, however, 50 

this contribution varied from 10% to 90% across biome, climate zones and among years (Hanson et al., 

2000), leading to the strong spatial and temporal variability in biomes and climate regions. Thus global 

mean RA would amount from roughly 42 to 54 Pg C a-1 (1 Pg = 1015 g) according to recent estimates of 

soil respiration (83-108 Pg C per year, Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017), which 

is almost 5 times of the carbon release from fossil fuel combustion from human activities (Le Quéré et 55 

al., 2017). Therefore, an accurate estimate of RA and its spatial-temporally dynamics is critical to 

understand the response of terrestrial ecosystems to global carbon cycling and climate change.  

Due to the difficulties of separation and direct measurement of RA at varying spatial scales and its 

diurnal, seasonal and annual variabilities, RA becomes one of the largest but highly uncertain carbon flux 

components in terrestrial ecosystems. Although individual site measurements of RA have been conducted 60 

across ecosystem types and biomes, knowledge gap still remains even though with a large number of 

field measurements (Hashimoto et al., 2015). Consequently, the globally spatial and temporal pattern of 

RA has not been explored and still acts as a “black box” in global carbon cycling. This “black box” is 

not well constrained and validated in most terrestrial ecosystem models and earth system models. Such 

progress and uncertainty motivate a development of global RA dataset from observations and understand 65 

its spatial and temporal pattern, causes and responses to future climate change. Despite of the general 

agreement that global soil respiration increased during last several decades (Bond-Lamberty et al., 2018; 

Bond-Lamberty and Thomson, 2010b; Zhao et al., 2017), how global RA responding to climate change 

is far from certain because of different temperature sensitivities of RA across terrestrial ecosystems (Liu 

et al., 2016; Wang et al., 2014). Therefore, reducing RA uncertainty and clarifying its response to climate 70 
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change, particularly to temperature and precipitation, is essential for global carbon allocation and future 

projection of climate change’s effects on global terrestrial carbon cycle.  

Although several studies have globally estimated soil respiration and its response to climate variables 

(Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017; Zhao et al., 2017), such efforts have not been 

conducted for global RA directly. Although Hashimoto et al. (2015) indirectly derived RA via the 75 

difference between total soil respiration and heterotrophic respiration, it probably led to uncertainty due 

to merely using the temperature and precipitation as the model drivers and a low model efficiency (32%). 

Besides temperature and precipitation, other variables, e.g. soil water, carbon and nitrogen content, are 

additionally critical factors regulating RA, and those factors generally varied with biomes and climate 

zones. Consequently, Hashimoto et al. (2015) may not reflect the key processes affecting RA, such as 80 

soil nutrient limitation.  

On the other hand, the climate-derived models usually explain < 50% variability of soil respiration 

(Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et al., 2017), which might be 

another uncertainty source. Recent studies have included more variables and field observations to 

promote the prediction ability of the linear of non-linear models (Jian et al., 2018; Zhao et al., 2017), yet 85 

it may propagate error because of the overfitting and autocorrelation among these variables (Long and 

Scott, 2006). Random Forest (RF, Breiman, 2001), a machine learning approach, could overcome these 

issues based on the hierarchical structure, and be insensitive to outliers and noise compared to single 

classifiers (Breiman, 2001; Tian et al., 2017). RF uses a large number of ensemble regression trees but a 

random selection of predictive variables (Breiman, 2001). RF only requires two free parameter settings: 90 

the number of variables sampled as candidates for each split and the number of trees. The performance 

of the RF model usually is not sensitive to the number of trees and number of variables. Moreover, RF 

regression can deal with large number of features, and help feature selection based on importance and 

can avoid overfitting (Jian et al., 2018). RF has been widely used for carbon fluxes modelling in recent 

years (Jung et al., 2017; Li et al., 2017; Zhao et al., 2017). 95 

Therefore, this study firstly applied RF algorithm to retrieve global RA based on the updated RA field 

observations from the most updated global soil respiration dataset (SRDB, version 4, Bond-Lamberty 

and Thomson, 2010a) with the linkage of other global variables (see “materials and methods” part), 

aiming to: (1) develop a global RA product using field observations across the globe (named data-derived 
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RA); (2) estimate RA’s spatial and temporal pattern; (3) identify the main driving factors of RA’s spatial 100 

and temporal variabilities; (4) compare with the previous RA estimates from Hashimoto et al. (2015). 

The outcome of this study will advance our understanding of global RA and its spatial and temporal 

variabilities. The proposed RA product is expected to serve as a benchmark for global vegetation models 

and its role in global carbon cycling. It will also advance our knowledge of the co-variation of RA with 

climate and other environmental factors, further link the empirical observations temporally and spatially 105 

to bridge the knowledge gap among local, regional and global scales. 

2 Material and methods 

2.1 RA database development 

First, RA database was developed based on observations across the globe from SRDB (Bond-Lamberty 

and Thomson, 2010a), which is publicly available at https://github.com/bpbond/srdb. Then we further 110 

updated the database using observations collected from China Knowledge Resource Integrated Database 

(www.cnki.net) up to March 2018, which followed the identical criteria applied in SRDB development. 

Annual RA observations were filtered that: (1) annual RA was directly reported in publications indicated 

by “years of data” of SRDB; (2) the start and end years were recorded in literatures or expanded from 

“years of data” of SRDB; (3) soil respiration measurements with Alkali absorption and soda lime were 115 

not included due to the potential underestimate of respiration rate with the increasing pressure inside 

chamber (Pumpanen et al., 2004); (4) observations with treatment of nitrogen addition, air/soil warming, 

and rain/litter exclusion were not included, except cropland; (5) potential problems observations (labelled 

by “Q10”, “Q11”, “Q12”, “Q13” and “Q14”) were excluded. Finally, this study included a total of 449 

field observations (Fig. 1). RA observations were absolutely dominated by forest ecosystem (379 120 

observations) with globally unevenly distributed, mainly from China, America and Europe. There was a 

great lack of RA observations in Australia, Russia and Africa. 
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Figure 1 Observational sites used in this study 

2.2 Vegetation, climate and soil data 125 

Global land cover with a half degree resolution was obtained from MODIS land cover 

(https://glcf.umd.edu/data/lc/). Monthly grid data of temperature, precipitation, diurnal temperature 

range and potential evapotranspiration at 0.5o resolution were obtained from CRU TS Version 4.01 from 

1901 to 2016 (https://crudata.uea.ac.uk) (Harris et al., 2014). Monthly shortwave radiation (SWR), 

Palmer Drought Severity Index (PDSI) and soil water content at 0.5o resolution were from NOAA/ESRL 130 

Physical Sciences Division (https://www.esrl.noaa.gov) (Kalnay et al., 1996). Soil organic carbon content 

with a resolution of 250 m was downloaded from soil grid data (https://soilgrids.org) (Hengl et al., 2017), 

and soil nitrogen content was from Spatial Data Access Tool (https://webmap.ornl.gov/ogc/index.jsp), 

while monthly nitrogen deposition data with a resolution of 0.5o were downloaded from the Earth System 

Models of GISS-E2-R, CCSM-CAM3.5 and GFDL-AM3, covering since 1850s 135 

(https://www.isimip.org). The monthly global variables were first aggregated to year scale and then 

resampled to a 0.5o resolution using bilinear interpolation for those variables without a 0.5o resolution. 

These variables could represent different aspects controlling RA variability. For instance, temperature, 

precipitation and soil water content are most important variables controlling plant photosynthesis, which 

is the primary carbon source of RA (Högberg et al., 2002; Högberg et al., 2001). Finally, global variables 140 

of each given site extracted by coordinates corresponding with annual RA estimates from the SRDB.  

2.3 Random Forest-based RA Modelling 

In this study, a RF model was trained with the 11 variables listed in Table S1 by caret by linking 

RandomForest package in R 3.4.4 (Kabacoff, 2015), then the trained model was implemented to estimate 
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grid RA at 0.5° × 0.5° resolution over 1980-2012. The performance of RF was assessed by a 10-fold 145 

cross-validation (CV). A 10-fold CV suggested that the whole dataset was subdivided into 10 parts with 

approximately an equal number of samples. The target values for each of these 10 parts were predicted 

on the training using the remaining nine parts. Two statistics were employed in model assessment: 

modelling efficiency (R2) and root mean square error (RMSE) (Yao et al., 2018). The 10-fold CV result 

showed that RF performed well and could capture the spatial- and temporal-pattern of RA (Fig. S1 in 150 

supplementary materials). 

2.4 Temporal trend analysis 

This study applied Theil-Sen linear regression to estimate temporal trend analysis of RA and its driving 

variables for each grid cell. The Theil-Sen estimator is a median-based non-parametric slope estimator, 

which has been widely used for spatial analysis of time series carbon flux (Forkel et al., 2016; Zhang et 155 

al., 2017). Mann-kendall non-parametric test was applied for the significant change trend in RA and its 

driving factors for each grid cell (p < 0.05).  

2.5 Relationships between RA and climate variables 

In this study, mean annual temperature, mean annual precipitation and mean annual shortwave radiation 

were considered as the most important proxies driving RA. The relationships between RA and 160 

temperature, precipitation and shortwave radiation were analyzed by partial correlation for each grid cell. 

The absolute value of the correlation coefficient of these three variables was used in RGB combination 

to indicate the dominant factors of RA.  

2.6 The comparison map profile method 

In order to compare with the solely global RA product generated by (Hashimoto et al., 2015), this study 165 

applied the comparison map profile (CMP) method. CMP was developed based on absolute distance (D) 

and cross-correlation coefficient (CC) through multiple scales (Gaucherel et al., 2008). D and CC reflect 

the similarity of data value and spatial structure of two images with the same size, respectively 

(Gaucherel et al., 2008). Low D and higher CC reflects goodness between the compared images, and vice 

versa. The D among moving windows of two compared images was calculated by equation (1) 170 

(Gaucherel et al., 2008):  
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D = abs(�̅� − �̅�)        (1) 

𝑥 ̅̅ ̅and �̅�  are averages calculated over two moving windows. This study used 3×3 to 41×41 pixels. 

Finally, the mean D was averaged for different scales. 

The CC was calculated by equation (2) (Gaucherel et al., 2008):  175 

CC =
1

𝑁2
∑ ∑

(𝑥𝑖𝑗−�̅�)×(𝑦𝑖𝑗−�̅�)

𝜎𝑥×𝜎𝑦

𝑁
𝑗=1

𝑁
𝑖=1    (2) 

With 𝜎𝑥
2 =

1

𝑁2−1
∑ ∑ (𝑥𝑖𝑗 − �̅�)𝑁

𝑗=1
𝑁
𝑖=1   (3) 

Where xij and yij are the pixel values at row i and column j of two moving windows of the two compared 

images, respectively. N represents the number of pixels for each moving window, while σx and σy are the 

standard deviation calculated from the two moving windows. Finally, like D calculations, CC were 180 

calculated as the mean of different scales.  

3 Results 

3.1 Spatial patterns of RA 

 

Figure 2 Spatial patterns of annual mean (a, b) and standard deviation (c, d) of belowground autotrophic 185 

respiration (RA) for this study (a, c) and Hashimoto RA (b, d) during 1980-2012.  

The data-derived RA in this study presented a great globally spatial variability during 1980-2012 (Fig. 

2a and Fig. 3). Largest RA fluxes commenced from tropical regions, particularly in Amazon tropical and 

Southeast areas where generally have a high RA > 700 g C m-2 a-1. Following the tropical areas, subtropics, 

e.g. South China, East America, and humid temperate areas, e.g. North America, West and Middle Europe, 190 
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had typical moderate RA fluxes of 400-600 g C m-2 a-1. By contrast, relative low RA fluxes occurred in 

the areas with sparse vegetation cover, cold and dry climate, e.g. boreal and tundra, which had low 

temperature and short growing season. Besides, dry or semi-arid areas, e.g. Northwest China and Middle 

East, also had typical low RA fluxes below 200 g C m-2 a-1, where were often limited by water availability.  

 195 

Figure 3 Latitudinal pattern of belowground autotrophic respiration (RA) for this study and Hashimoto 

RA. The grey area means 2.5 to 97.5 percentile ranges of the predicted RA. 

The most significant RA variability (expressed by standard deviation, Fig. 2c) was found in topical or 

subtropical regions with above 80 g C m-2 a-1, while most areas remained less variable with less than 40 

g C m-2 a-1. Latitudinally, zonal mean RA increased from cold and dry biomes (Tundra and semi-arid) to 200 

warm and humid biomes (temperate and tropical forests, Fig. 3), reflecting from more to less 

environmental limitations. RA varied from 112±21 g C m-2 a-1 at about 70oN to 552±101 g C m-2 a-1 at 

equator. Within in 10oS -25oS and 15oN -20oN, due to the limitation of water, zonal mean RA experienced 

a slight decrease. Therefore, with the increase of water availability, RA led to a second peak in around 

20oN and 40oS, respectively.  205 

Compared to data-derived RA, Hashimoto RA presented a similar spatial pattern, with highest RA fluxes 

in tropical regions characterized by warm and humid climate, followed by subtropical regions, and lowest 

RA in boreal areas featured by in cold and dry climate (Fig. 2b). The most significant change occurred 

in tropical areas and middle Australia. However, it is worth noted that some clear differences between 

data-derived and Hashimoto RA existed (Fig. 4): specifically, there was a remarkable difference of above 210 

300 g C m-2 a-1 for South Amazon and larger than 200 g C m-2 a-1 for subtropical China. Although most 

areas between data-derived RA and Hashimoto RA expressed high and positive correlations, some areas, 
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such as Middle East, West Russia and East America and North Japan, showed negative correlations.  

 

Figure 4 Comparison of data-derived RA with Hashimoto RA based on absolute distance (a) and cross-215 

correlation (b) 

3.2 | Spatial pattern of RA trend 

 

Figure 5 Spatial patterns of the temporal trend for belowground autotrophic respiration (RA) for this 

study and Hashimoto RA during 1980-2012 220 

The trend of data-derived RA showed heterogeneous patterns in spatial (Fig. 5). A total of 58% of global 

areas experienced an increasing trend during 1980-2012 (calculating from cell areas), and 33% of these 

areas showed a significant change (p < 0.05). Generally, the change trend for the majority areas was 

within -4 – 4 g C m-2 a-1, while the most striking increasing change occurred in East Russia and tropical 

and Eastern regions in Africa with an increasing trend of above 5 g C m-2 a-1. Similarly, 77% of global 225 

areas of Hashimoto RA had an increasing trend, 46% of which were statistically significant (p < 0.05).  

3.4 | Total RA and its temporal trend 
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Figure 6 Inter-annual variability (a and b) and total amount (c) of belowground autotrophic respiration 

(RA) for this study and Hashimoto RA during 1980-2012. The grey area represents 95% confidence 230 

interval. The error bars mean standard deviation.  

Mean global RA was 43.8±0.4 Pg C a-1 during 1980-2012 (Fig. 6c), varying from 42.9 Pg C a-1 in 1992 

to 44.9 Pg C a-1 in 2010, with a significant trend of 0.025±0.006 Pg C per year despite of high annual 

variabilities (0.06% a-1, p < 0.001, Fig. 6a). Similarly, a rising trend was also observed for Hashimoto 

RA, however, its annual increasing trend (0.073±0.009 Pg C a-1, p < 0.001, Fig. 6b) was higher than that 235 

of data-derived RA. Annual mean of Hashimoto RA was 40.5±0.9 Pg C a-1 (Fig. 6c). 
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Figure 7 Total amount of belowground autotrophic respiration (RA) for this study and Hashimoto RA 

for three climate zones and eight biomes during 1980-2012. Three climate zones defined as boreal, 

temperature and tropical regions according to Peel et al. (2007), while eight biomes include boreal forest, 240 

cropland, grassland, savannas, shrubland, temperate forest, tropical forest and wetland. The error bars 

indicated standard deviation.  

RA and its trend was also evaluated for three climate zones (boreal, temporal and tropical areas based on 

Köppen-Geiger climate classification) and eight major biomes (boreal forest, cropland, grassland, 

savannas, shrubland, temperate forest, tropical forest and wetland, Fig. 7). Tropics had highest RA of 245 

15.6±0.2 Pg C a-1, followed by temperate regions with 9.3±0.1 Pg C a-1, and boreal areas represented the 

lowest RA of 6.7±0.1 Pg C a-1. These three climate zones were main contributors of global RA, 

accounting for 72%. Temporally, considerable RA inter-annual variability of these three climate zones 

existed (Fig. S2). Specifically, RA in tropical and boreal zones showed a significantly increasing trend 

from 1980 to 2012, with an increasing rate of 0.013±0.003 and 0.008±0.002 Pg C a-1. However, RA in 250 

temperate zones presented a slightly decreasing trend of -0.003±0.001 Pg C a-1 (p = 0.048) although 

strong variability was observed.   

In terms of biomes, tropical forest had the highest RA, followed by the widely distributed cropland and 

savannas (Fig. 7), while wetland had the lowest RA due to its limited land cover. All the biomes, except 

temperate forest, savannas and wetland, showed a significantly increasing trend during 1980-2012 (ps < 255 

0.05). Tropical forest, boreal forests and cropland had the highest increasing trend of 0.0076±0.0015, 

0.0047±0.0016, 0.0036±0.0014 Pg C a-1, respectively. Compared to data-derived RA, Hashimoto RA for 

the three climate zones and eight biomes generally produced similar change patterns, although the 

magnitude difference existed (Figs. 7, S2 and S3). However, there was a significant increasing trend of 

temperate zones, temperate forest, savannas and wetland for derived from Hashimoto RA, which were 260 

not observed in data-derived RA.  
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Figure 8 The relationships between belowground autotrophic respiration (RA) and the anomaly of 

temperature and precipitation for this study (a, b) and Hashimoto (c, d) respectively. The anomaly was 

calculated as the difference between temperature or precipitation of corresponding year to that of 1980. 265 

  RA was significantly correlated with temperature anomaly (R2 = 0.59, p < 0.001) and precipitation 

anomaly (R2 = 0.50, p < 0.001, Fig. 8). On average, RA increased by 0.85±0.13 Pg C a-1 for 1oC increment 

in mean annual temperature, and 0.17±0.03 Pg C a-1 for 10 mm increase in mean annual precipitation. 

However, different biomes and climate zones showed uneven responses to the temperature and 

precipitation change (Fig. S4 and S5). For example, no significant correlations were found between RA 270 

in temperate zone/savannas/wetland and temperature anomaly, while other climate zones and biomes 

were significantly correlated with temperature/precipitation anomaly.  

4. Dominant factors for RA variability 

 

Figure 9 Dominant factors for belowground autotrophic respiration (RA) for this study and Hashimoto 275 

RA. MAT = mean annual temperature, MAP = mean annual precipitation; SWR = shortwave radiation. 

The dominant environmental factor was examined with partial regression coefficients when regressing 

RA against annual mean temperature, annual mean precipitation and shortwave radiation. Latitudinally, 
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higher mean annual temperature, precipitation and shortwave radiation were associated with higher RA 

in the major latitudinal gradients (positive partial correlations, Fig. S6). Spatially, the dominant 280 

environmental factor varied greatly globally (Fig. 9). Precipitation was the most important dominant 

factor for the spatial pattern of RA among the three environmental controls, covering about 56% of global 

land areas (Fig. S7), which was widely distributed globally, particularly in dry or semi-arid areas, such 

as Northwest China, Southern Africa, Middle Australia and America. Temperature dominated about 19% 

of global land areas, which mainly occurred in tropical Africa, Southern Amazon rainforests, Siberia and 285 

partly tundra. The rest land area (25%) was dominated by shortwave radiation, primarily covering boreal 

areas above 50oN, Eastern America and middle and Eastern Russian. Similarly, precipitation was also the 

most important dominant factor for Hashimoto RA, dominating about 77% land area, while temperature 

and shortwave radiation dominated 13% and 10% land area. However, their spatial patterns varied greatly 

compared to data-derived RA. For example, temperature was the main dominant factor for most area of 290 

Australia, while data-derived RA indicated that precipitation and shortwave radiation dominated such 

areas (Fig. 9).  

4 Discussion 

4.1 Global RA 

Despite of great efforts to quantify global soil carbon fluxes and their spatial and temporal patterns 295 

(Bond-Lamberty and Thomson, 2010b; Hursh et al., 2017; Jian et al., 2018), to our knowledge, no attempt 

tried to assess RA using machine learning approach by linking a large number of empirical measurements, 

and RA’s spatial and temporal patterns remain large uncertainties. Such uncertainties justify a 

development of global RA product derived from observations to understand its spatial and temporal 

patterns, causes and responses to future climate change. Based on the most updated observations from 300 

SRDB released by the end of 2018, this study for the first time applied RF algorithm to estimate the 

temporal and spatial variability of global RA and its response to environmental variables, which indeed 

can contribute to reduce RA uncertainties.  

Globally, mean annual RA amounted to 43.8±0.4 Pg C a-1 from 1980 to 2012 (Fig. 6). It was slightly 

higher than Hashimoto RA (40.5±0.9 Pg C a-1), and there was great divergence of spatial and temporal 305 

patterns (see discussion part in “Comparison with Hashimoto RA”). Due to no direct estimate on global 
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RA, this study compared other RA estimates using total soil respiration multiplied by the proportion of 

RA or heterotrophic respiration. Bond-Lamberty et al. (2018) proposed that the global average proportion 

of heterotrophic respiration ranged from 0.54 to 0.63 over 1990-2014 and global total soil respiration 

was 83 to 108 Pg C a-1 from different approaches according to recent predictions (Bond-Lamberty and 310 

Thomson, 2010b; Hursh et al., 2017), thus global RA varied from 31 to 51 Pg C a-1. RA estimate in this 

study fell in this range. Similarly, during 1980-2012, RA increased by 0.025±0.006 Pg C a-1, which may 

be related to the increasing photosynthesis due to global warming and CO2 fertilization effects, which 

could increase carbon availability in plant-derived substrate inputs into the soil (e.g. root exudates and 

biomass) for both root metabolism (Piñeiro et al., 2017; Zhou et al., 2016). Such annual increase 315 

accounted for about 25% of global soil respiration increase (0.09 and 0.1 Pg C a-1) (Bond-Lamberty and 

Thomson, 2010b; Hashimoto et al., 2015), suggesting that about one quarter of the total soil respiration 

increment due to climate change came from RA. With 1 oC increase in global mean temperature, RA will 

increase by 0.85±0.13 Pg C a-1 and 0.17±0.03 Pg C a-1 for 10 mm increase in precipitation, which 

indicated that carbon fluxes from RA might positively feedback to future global climate change, which 320 

was typically characterized by increasing temperature and changes in precipitation (IPCC, 2013).  

RA estimate in this study also has important indications of carbon allocation from photosynthesis. The 

immediate carbon substrates for RA were primarily derived from recent photosynthesis (Högberg et al., 

2001; Subke et al., 2011). Strong correlation between photosynthesis and RA demonstrated the evidence 

for their close coupling relationships (Chen et al., 2014; Kuzyakov and Gavrichkova, 2010). Globally, 325 

GPP was about 125 Pg C a-1 during last few decades (Bodesheim et al., 2018; Zhang et al., 2017). Thus, 

roots respired more than one third carbon from GPP, suggesting that except the carbon used for 

constructing belowground tissues, a large proportion of carbon will be returned back to atmosphere 

respired by roots. However, it should be noted that through root respiration, soil nutrients for vegetation 

growth will be required, which may affect the RA flux.   330 

4.2 Dominant factors 

Spatially, the driving factors for RA varied greatly. Temperature and shortwave radiation were the main 

driving factors for high latitudinal areas above 50oN (Figure 9a). This result was not surprising because 

RA was positively correlated with temperature or photosynthesis (indirectly reflecting the solar radiation) 

(Chen et al., 2014; Tang et al., 2016), and high latitudinal regions was always limited by temperature or 335 
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energy, leading to low RA as well (Fig. 3a).  

Globally, precipitation was the most important factor, covering about 56% of land area (Fig. 9a and 

S7). Precipitation was always considered as a proxy for soil water content (Hursh et al., 2017; Yao et al., 

2018), and such wide dominance of precipitation on RA was related to the mechanisms of the soil water 

availability driving RA. First, soil water exists in form of ice when temperature is below zero, that plant 340 

and soil microbes could not directly use for growth or respiration. This could be observed in some boreal 

areas where precipitation was the dominant factor of RA (Fig. 9a). Second, too high or too low soil water 

content (e.g. flooding and drought) could limit the mobility of substrates and carbon input to 

belowground, which could affect RA. Yan et al. (2014) found that soil respiration decreased 

once soil water content was below a lower (14.8 %) or above an upper (26.2%) threshold in a poplar 345 

plantation. Similarly, Gomez-Casanovas et al. (2012) also found that RA decreased when soil water 

content was above 30%. These results seemed to support the finding in this study. Third, the relationship 

between soil water content and RA or total soil respiration is more complex than the relationship between 

temperature and soil respiration. Numerous formula, such as linear (Tang et al., 2016), polynomial 

(Moyano et al., 2012), logarithmic (Schaefer et al., 2009), quadratic (Hursh et al., 2017) models have 350 

been widely applied to describe the relationship between soil water content and soil respiration. The 

multifarious relationships between soil water content and RA may occur because soil water content affect 

RA in multiple ways. Meanwhile, seasonal variability of precipitation and soil water content is often 

correlated with temperature (Feng and Liu, 2015), making the relationship between soil water content 

and RA more complex.  355 

Similarly, the dominance of precipitation in Hashimoto was also widely observed (Fig. 8), dominating 

77% of land area (Fig. S7). Although this percentage was 17% higher than data-derived RA, both results 

demonstrated that global RA of the majority land cover was dominated by precipitation. However, it is 

noticeable that dominant environmental factor controlling spatial carbon fluxes gradient may differ 

among different years (Reichstein et al., 2007), e.g. climate extreme and disturbance.  360 

4.3 Comparison with Hashimoto RA 

Globally, total data-derived RA was slightly higher than Hashimoto RA, however, great divergence was 

observed both spatially and temporally (Fig. 6), particularly in tropical regions, where data-derived RA 

was much lower than Hashimoto RA (Fig. 3). These differences could be attributed to several reasons. 
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First, two RA products had different land cover areas, especially in desert areas in North Africa, where 365 

existed very sparse or no vegetation. If data-derived RA was masked by Hashimoto RA, global RA was 

39.6±0.4 Pg C a-1, which was pretty close to Hashimoto RA (Fig. S8). Second, different predictors and 

algorithms were applied for data-derived RA and Hashimoto RA prediction. Besides temperature and 

precipitation, RA was also affected by soil nutrient, carbon substrate supply, belowground carbon 

allocation, site disturbance and other variables (Chen et al., 2014; Hashimoto et al., 2015; Tang et al., 370 

2016; Zhou et al., 2016). Hashimoto RA was calculated from the difference between total soil respiration 

and heterotrophic respiration, which were predicted by a simple climate-driven model using temperature 

and precipitation only (Hashimoto et al., 2015). Thus Hashimoto RA could not reflect its soil nutrient 

and other environmental constrains. To overcome such limitations, beside temperature and precipitation, 

this study included soil water content, soil nitrogen and soil organic carbon as proxies for environmental 375 

and nutrient constraints of RA and considered the interactions among these variables using RF. This study 

indeed improved the model efficiency to 0.52 for RA prediction (Fig. S1), which was 0.32 for Hashimoto 

soil respiration (Hashimoto et al., 2015). The simple climate-model for Hashimoto soil respiration could 

be its advantages and limitations (Hashimoto et al., 2015). Third, the empirical model (the relationship 

between total soil respiration and heterotrophic respiration) deriving Hashimoto RA originated from 380 

forest ecosystems (Bond-Lamberty et al., 2004; Hashimoto et al., 2015), which may bring uncertainties 

to other ecosystems. For example, the difference between data-derived RA and Hashimoto RA varied up 

to 350 g C a-1 in South, North Amazon areas and Madagascar, where the savannas widely distributed 

(Fig. 4), thus Hashimoto RA might not capture the spatial and temporal pattern of RA for non-forest 

ecosystems. Including more environmental variables and improving algorithm could be a good option to 385 

reduce the uncertainty in modelling RA.  

4.4 Advantages, limitations and uncertainties 

Generally, this study had four main advantages to estimate global RA: first, this study, to our knowledge, 

was the first attempt to model RA using a large number of empirical field observations, and estimate 

spatial and temporal patterns globally. While most previous studies mainly focused on global total soil 390 

respiration, which was not partitioned into RA and heterotrophic respiration globally (Hursh et al., 2017; 

Jian et al., 2018; Zhao et al., 2017). Second, this study used an up-to-date field observational database 

developed from SRDB up to the end 2018. This new updated database included a total of 449 field 
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observations (Fig. 1). These observations had a wide coverage range of global terrestrial ecosystems and 

represented all major biomes and climate zones. Third, the global terrestrial ecosystems were separated 395 

into eight biomes, including boreal forest, cropland, grassland, savannas, shrubland, temperate forest, 

tropical forest and wetland. The total RA and its inter-annual variability were evaluated for each of the 

eight biomes (Fig. S3 and S4). Besides, total RA and its inter-annual variability was also assessed for 

three climate zones - boreal, temperate and tropical zones (Figs. S2 and S5), according to the Köppen-

Geiger climate classification system (Peel et al., 2007). These were important climate zones, contributing 400 

72% of global RA. Different temporal change trends across biomes and climate zones also further 

indicated an uneven response of RA to climate change. Fourth, this study used a RF algorithm to model 

and map global RA with the linkage of climate and soil predictors. The results showed that RF could 

accurately estimate the relationships between annual RA and predictors (Fig. S1). Compared to linear 

regressions for soil respiration prediction (because no global RA prediction before this study) with a 405 

model efficiency less than 35% (Bond-Lamberty and Thomson, 2010b; Hashimoto et al., 2015; Hursh et 

al., 2017), RF algorithm achieved a much higher model efficiency to 52%, which indeed improved the 

RA modelling and reduced the uncertainties.  

Although data-derived global RA could serve as a benchmark for global carbon cycling modelling, and 

this study had filled the data-gaps of global RA, limitations and uncertainties still remained in few aspects. 410 

First, the effects of rising atmospheric CO2 on root growth was not explicitly represented in this study, 

although CO2 fertilization effects could partly be represented in the increase temperature. While the 

magnitude of CO2 fertilization effects on photosynthesis is still uncertain (Gray et al., 2016), RF or other 

machine learning approaches are encouraged to quantify the uncertainties due to CO2 fertilization. 

Second, this study did not consider the effects of human activities and historical changes in biomes on 415 

RA. However, important changes may occur in tropical forest, grassland and cropland during last several 

decades due to human activities (Hansen et al., 2013; Klein Goldewijk et al., 2011). Thus, changes in 

biomes should be included in future global RA and carbon cycling modelling. However, the lack of such 

data is the main constrain of detecting the effects of biome change on RA. Third, uneven coverage of 

observations in the updated database would be another source of uncertainties. Although our dataset had 420 

a wide range of land cover, the observational sites mainly distributed in China, Europe and North America 

and were dominated by forests. There was a great lack of observations in areas, such as Africa, Austria 
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and Russia, and biomes, such as tropical forest, shrubland, wetland and cropland. Therefore, including 

more observations in these areas and biomes should largely increase our capability to assess the spatial 

and temporal patterns of global RA and contribute to improve the global carbon cycling modelling to 425 

future climate change.  

5 Data availability 

The datasets are freely downloadable from https://doi.org/10.6084/m9.figshare.7636193 (Tang et al., 

2019). 

6 Conclusions  430 

Although data-derived global RA may serve as a benchmark for ecosystem models, no such study has 

assessed global variability in RA with a large number of empirical observations that can help bridge the 

knowledge gap between local, regional, and global scales. This study has filled this knowledge gap by 

linkage of field observations and global variables using RF algorithm, providing an annual global RA 

product at a of 0.5o × 0.5o resolution from 1980 to 2012. Currently, robust findings include: (1) Annual 435 

mean RA was 43.8±0.4 Pg C a-1 with a temporally increasing trend of 0.025±0.006 Pg C a-1 over 1980-

2012, indicating an increasing carbon return from the roots to the atmosphere; (2) uneven temporal and 

spatial variabilities in varying climate zones and biomes indicated their uneven temperature sensitivities 

to future climate change, challenging the perspective that the parameters of global carbon stimulation 

independent on climate zones and biomes; (3) precipitation dominated the spatial variabilities of RA. 440 

However, further improvements in the approach should overcome shortcomings from reduced data 

availability and the mismatch in spatial resolution between covariates and in situ RA. 
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